Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary

نویسندگان

  • Christopher A. Francis
  • Gregory D. O'Mullan
  • Jeffrey C. Cornwell
  • Bess B. Ward
چکیده

Chesapeake Bay, the largest estuary in North America, can be characterized as having steep and opposing gradients in salinity and dissolved inorganic nitrogen along the main axis of the Bay. In this study, the diversity of nirS gene fragments (encoding cytochrome cd 1-type nitrite reductase), physical/chemical parameters, and benthic N2-fluxes were analyzed in order to determine how denitrifier communities and biogeochemical activity vary along the estuary salinity gradient. The nirS gene fragments were PCR-amplified, cloned, and sequenced from sediment cores collected at five stations. Sequence analysis of 96-123 nirS clones from each station revealed extensive overall diversity in this estuary, as well as distinct spatial structure in the nirS sequence distributions. Both nirS-based richness and community composition varied among stations, with the most dramatic shifts occurring between low-salinity (oligohaline) and moderate-salinity (mesohaline) sites. For four samples collected in April, the nirS-based richness, nitrate concentrations, and N2-fluxes all decreased in parallel along the salinity gradient from the oligohaline northernmost station to the highest salinity (polyhaline) station near the mouth of the Bay. The vast majority of the 550 nirS sequences were distinct from cultivated denitrifiers, although many were closely related to environmental clones from other coastal and estuarine systems. Interestingly, 8 of the 172 OTUs identified accounted for 42% of the total nirS clones, implying the presence of a few dominant and many rare genotypes, which were distributed in a non-random manner along the salinity gradient of Chesapeake Bay. These data, comprising the largest dataset to investigate nirS clone sequence diversity from an estuarine environment, also provided information that was required for the development of nirS microarrays to investigate the interaction of microbial diversity, environmental gradients, and biogeochemical activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays.

A functional gene microarray was used to investigate denitrifier community composition and nitrite reductase (nirS) gene expression in sediments along the estuarine gradient in Chesapeake Bay, USA. The nirS oligonucleotide probe set was designed to represent a sequence database containing 539 Chesapeake Bay clones, as well as sequences from many other environments. Greatest nirS diversity was d...

متن کامل

nirS-containing denitrifier communities in the water column and sediment of the Baltic Sea

The aim of this study was to compare structural differences in the nirS-type denitrifying microbial communities along the environmental gradients observed in the water column and coastal sediments of the Baltic Sea. To link community structure and environmental gradients, denitrifier communities were analyzed by terminal restriction fragment length polymorphism (T-RFLP) based on nirS as a funct...

متن کامل

Denitrification and the Denitrifier Community in Coastal 1 Microbial

18 Denitrification was measured in three structurally different coastal microbial mats by 19 using the stable isotope technique. The composition of the denitrifying community was 20 determined by analyzing the nitrite reductase (nirS and nirK) genes using clone libraries 21 and the GeoChip. The highest potential rate of denitrification (7.0±1.0 mmol N m d) 22 was observed during summer at stati...

متن کامل

Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray.

The relationship between environmental factors and functional gene diversity of ammonia-oxidizing bacteria (AOB) was investigated across a transect from the freshwater portions of the Chesapeake Bay and Choptank River out into the Sargasso Sea. Oligonucleotide probes (70-bp) designed to represent the diversity of ammonia monooxygenase (amoA) genes from Chesapeake Bay clone libraries and cultiva...

متن کامل

Chesapeake Bay nitrogen fluxes derived from a land‐estuarine ocean biogeochemical modeling system: Model description, evaluation, and nitrogen budgets

The Chesapeake Bay plays an important role in transforming riverine nutrients before they are exported to the adjacent continental shelf. Although the mean nitrogen budget of the Chesapeake Bay has been previously estimated from observations, uncertainties associated with interannually varying hydrological conditions remain. In this study, a land-estuarine-ocean biogeochemical modeling system i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013